Step-by-Step Instructions for the Capstone 1. Processor Design (November 7 – November 14) 1.

Step-by-Step Instructions for the Capstone

1. Processor Design (November 7 – November 14)

1.
Define the Instruction Set Architecture (ISA):

· Choose a small set of RISC-style instructions (e.g., LOAD, STORE, ADD, SUB, BRANCH).

· Define formats for each instruction, specifying opcodes, operands, and encoding.

1.
Design Pipeline Stages:

· Divide the processor into five pipeline stages: Fetch (IF), Decode (ID), Execute (EX), Memory (MEM), Write-back (WB).

· Outline the function of each stage and any data it passes to the next stage.

1.
Implement Pipeline Control Logic:

· Design control signals for managing each pipeline stage.

· Add hazard detection and resolution logic for
data hazards (using techniques like forwarding and stalls) and
control hazards (such as branch prediction).

1.
Document: Create initial documentation outlining the processor architecture, pipeline stages, and hazard handling approach for inclusion in the final report.

2. Memory Hierarchy and Cache Design (November 14 – November 21)

1.
Design Main Memory:

· Set up a simple main memory model (e.g., 1KB memory), with addresses for instructions and data.

1.
Implement a Direct-Mapped Cache:

· Design a cache with specifications like:

·
Cache Size: 64 words

·
Block Size: 4 words

·
Direct Mapping: Use (Memory Address) % Number of Cache Lines to map memory blocks to cache lines.

1.
Develop Cache Access Logic:

· Write logic to check if requested data is in the cache (hit) or not (miss).

· On a miss, load a block of data from main memory to cache, simulating the miss penalty.

1.
Test Cache Configuration:

· Write small test programs to evaluate cache behavior (e.g., repetitive memory access patterns).

· Record cache hit/miss rates under different conditions.

1.
Document: Summarize cache architecture, mapping approach, and preliminary performance findings for inclusion in the report.

3. I/O Subsystem and Simulation Setup (November 21 – November 28)

1.
Design the I/O Subsystem:

· Use memory-mapped addresses for input/output devices (e.g., 0xFC for input, 0xFD for output).

· Decide on a
polling or
interrupt-driven method to handle I/O (interrupts are optional for this project).

1.
Integrate I/O Logic with the Processor:

· Write code to handle input from or output to the I/O device, depending on the memory address accessed.

· If using polling, ensure the CPU continuously checks I/O device status at set intervals.

1.
Set Up the Simulation Environment:

· Choose a simulation tool like
Logisim or
Verilog. Create and test each component separately (e.g., pipeline stages, memory, cache, I/O) and integrate them progressively.

1.
Simulate with Sample Programs:

· Develop sample programs in assembly language to test each functionality: pipeline execution, memory access, and I/O operations.

· Verify that the pipelined processor, cache, and I/O handle instructions as expected.

1.
Document: Record details about the I/O subsystem, simulation setup, and initial test results.

4. Performance Analysis (November 28 – December 1)

1.
Measure CPI (Cycles Per Instruction):

· Run test programs with and without pipelining to calculate the CPI.

· Use formulas like: CPI=Base CPI+(Stall Penalty×%Stalls)+(Branch Penalty×%Branches)

1.
Analyze Cache Performance:

· Measure cache hit and miss rates by running memory-intensive programs.

· Calculate
Average Memory Access Time (AMAT): AMAT=(Hit Rate×Cache Access Time)+(Miss Rate×Miss Penalty)

1.
Evaluate I/O Performance:

· Record CPU utilization with polling (and interrupts if implemented) to analyze the I/O system’s impact on performance.

1.
Compile Data:

· Organize data into tables or graphs for easy comparison.

· Prepare an analysis of results for CPI, cache performance, and I/O efficiency.

1.
Document: Complete the performance section of the report, summarizing results and insights on the system’s efficiency.

4. Final Report and Presentation (December 1 – December 3)

1.
Finalize the Processor Design Report:

· Complete all sections: architecture, pipeline stages, cache design, I/O subsystem, and performance analysis.

· Ensure clarity and thorough explanations, including diagrams and graphs.

1.
Prepare Simulation Code for Submission:

· Confirm that all simulation files (Logisim or HDL files) and test programs are correctly organized and functional.

· Include instructions for running the simulations.

1.
Develop a Presentation:

· Create a concise, 10-15 minute presentation that highlights the design, simulation results, and performance analysis.

· Use diagrams for each pipeline stage, cache structure, and memory hierarchy.

· Include graphs and tables of CPI, cache hit rates, and I/O impact for visual impact.

1.
Rehearse the Presentation:

· Practice explaining the project flow, design choices, and key findings to ensure a clear, confident delivery.

Share This Post

Email
WhatsApp
Facebook
Twitter
LinkedIn
Pinterest
Reddit

Order a Similar Paper and get 15% Discount on your First Order

Related Questions

 The Rest of the resources and instructions are provided in the screenshots below. You will need the Project overview to complete this

 The Rest of the resources and instructions are provided in the screenshots below. You will need the Project overview to complete this assignment. Project Overview This project includes the following tasks: Gather product information Analyze and differentiate product vulnerabilities Recommendation based on empirical data collection Objective: Product Selection Recommendation Organizations

 How Does Surescripts Integration Improve Prescription Management?  The Future of E-Prescriptions: Why Surescripts Integration is a Must-Have In

 How Does Surescripts Integration Improve Prescription Management?  The Future of E-Prescriptions: Why Surescripts Integration is a Must-Have In today’s fast-evolving healthcare landscape, seamless data exchange is essential for improving patient care and optimizing workflows. Surescripts integration solutions provide a secure and efficient way to connect pharmacies, healthcare providers, and electronic

[url= Integration Services[/url] are transforming businesses by streamlining operations, enhancing customer experiences, and enabling data-driven

[url= Integration Services[/url] are transforming businesses by streamlining operations, enhancing customer experiences, and enabling data-driven decisions. By automating repetitive tasks, AI frees up resources for more strategic activities, improving productivity. AI tools like chatbots and recommendation engines offer personalized solutions, fostering customer loyalty. AI also helps businesses analyze large datasets